歡迎來到《圣博凱斯》變頻供水設(shè)備官網(wǎng)
精銳于專業(yè) / 卓然于品質(zhì) -- 20年專注于供水行業(yè),締造至臻品質(zhì) -- 服務熱線:0731-85783205 18932453205

ads使用史密斯圓阻抗匹配_史密斯圓阻抗匹配例題詳解

本文利用史密斯圓圖作為RF阻抗匹配的設(shè)計指南。文中給出了反射系數(shù)、阻抗和導納的作圖范例,并用作圖法設(shè)計了一個頻率為60MHz的匹配網(wǎng)絡。

實踐證明:史密斯圓圖仍然是計算傳輸線阻抗的基本工具。

在處理RF系統(tǒng)的實際應用問題時,總會遇到一些非常困難的工作,對各部分級聯(lián)電路的不同阻抗進行匹配就是其中之一。一般情況下,需要進行匹配的電路包括天線與低噪聲放大器(LNA)之間的匹配、功率放大器輸出(RFOUT)與天線之間的匹配、LNA/VCO輸出與混頻器輸入之間的匹配。匹配的目的是為了保證信號或能量有效地從“信號源”傳送到“負載”。

在高頻端,寄生元件(比如連線上的電感、板層之間的電容和導體的電阻)對匹配網(wǎng)絡具有明顯的、不可預知的影響。頻率在數(shù)十兆赫茲以上時,理論計算和仿真已經(jīng)遠遠不能滿足要求,為了得到適當?shù)淖罱K結(jié)果,還必須考慮在實驗室中進行的RF測試、并進行適當調(diào)諧。需要用計算值確定電路的結(jié)構(gòu)類型和相應的目標元件值。

有很多種阻抗匹配的方法,包括:計算機仿真: 由于這類軟件是為不同功能設(shè)計的而不只是用于阻抗匹配,所以使用起來比較復雜。設(shè)計者必須熟悉用正確的格式輸入眾多的數(shù)據(jù)。設(shè)計人員還需要具有從大量的輸出結(jié)果中找到有用數(shù)據(jù)的技能。另外,除非計算機是專門為這個用途制造的,否則電路仿真軟件不可能預裝在計算機上。

手工計算: 這是一種極其繁瑣的方法,因為需要用到較長(“幾公里”)的計算公式、并且被處理的數(shù)據(jù)多為復數(shù)。

經(jīng)驗: 只有在RF領(lǐng)域工作過多年的人才能使用這種方法??傊?,它只適合于資深的專家。

史密斯圓圖:本文要重點討論的內(nèi)容。

本文的主要目的是復習史密斯圓圖的結(jié)構(gòu)和背景知識,并且總結(jié)它在實際中的應用方法。討論的主題包括參數(shù)的實際范例,比如找出匹配網(wǎng)絡元件的數(shù)值。當然,史密斯圓圖不僅能夠為我們找出最大功率傳輸?shù)钠ヅ渚W(wǎng)絡,還能幫助設(shè)計者優(yōu)化噪聲系數(shù),確定品質(zhì)因數(shù)的影響以及進行穩(wěn)定性分析。

圖1. 阻抗和史密斯圓圖基礎(chǔ)

基礎(chǔ)知識

在介紹史密斯圓圖的使用之前,最好回顧一下RF環(huán)境下(大于100MHz) IC連線的電磁波傳播現(xiàn)象。這對RS-485傳輸線、PA和天線之間的連接、LNA和下變頻器/混頻器之間的連接等應用都是有效的。

大家都知道,要使信號源傳送到負載的功率最大,信號源阻抗必須等于負載的共軛阻抗,即:Rs + jXs = RL - jXL

圖2. 表達式Rs + jXs = RL - jXL的等效圖

在這個條件下,從信號源到負載傳輸?shù)哪芰孔畲蟆A硗?,為有效傳輸功率,滿足這個條件可以避免能量從負載反射到信號源,尤其是在諸如視頻傳輸、RF或微波網(wǎng)絡的高頻應用環(huán)境更是如此。

史密斯圓圖

史密斯圓圖是由很多圓周交織在一起的一個圖。正確的使用它,可以在不作任何計算的前提下得到一個表面上看非常復雜的系統(tǒng)的匹配阻抗,唯一需要作的就是沿著圓周線讀取并跟蹤數(shù)據(jù)。

史密斯圓圖是反射系數(shù)(伽馬,以符號

表示)的極座標圖。反射系數(shù)也可以從數(shù)學上定義為單端口散射參數(shù),即s11。

史密斯圓圖是通過驗證阻抗匹配的負載產(chǎn)生的。這里我們不直接考慮阻抗,而是用反射系數(shù)

L,反射系數(shù)可以反映負載的特性(如導納、增益、跨導),在處理RF頻率的問題時,

L更加有用。

我們知道反射系數(shù)定義為反射波電壓與入射波電壓之比:

圖3. 負載阻抗

負載反射信號的強度取決于信號源阻抗與負載阻抗的失配程度。反射系數(shù)的表達式定義為:

由于阻抗是復數(shù),反射系數(shù)也是復數(shù)。

為了減少未知參數(shù)的數(shù)量,可以固化一個經(jīng)常出現(xiàn)并且在應用中經(jīng)常使用的參數(shù)。這里Zo (特性阻抗)通常為常數(shù)并且是實數(shù),是常用的歸一化標準值,如50

、75

、100

和600

。于是我們可以定義歸一化的負載阻抗:

據(jù)此,將反射系數(shù)的公式重新寫為:

從上式我們可以看到負載阻抗與其反射系數(shù)間的直接關(guān)系。但是這個關(guān)系式是一個復數(shù),所以并不實用。我們可以把史密斯圓圖當作上述方程的圖形表示。

為了建立圓圖,方程必需重新整理以符合標準幾何圖形的形式(如圓或射線)。

首先,由方程2.3求解出;

并且

令等式2.5的實部和虛部相等,得到兩個獨立的關(guān)系式:

重新整理等式2.6,經(jīng)過等式2.8至2.13得到最終的方程2.14。這個方程是在復平面(

r,

i)上、圓的參數(shù)方程(x-a)2 + (y-b)2 = R2,它以(r/r+1, 0)為圓心,半徑為1/1+r.

更多細節(jié)參見圖4a。

圖4a. 圓周上的點表示具有相同實部的阻抗。例如,R=1的圓,以(0.5, 0)為圓心,半徑為0.5。它包含了代表反射零點的原點(0, 0) (負載與特性阻抗相匹配)。以(0,0)為圓心、半徑為1的圓代表負載短路。負載開路時,圓退化為一個點(以1,0為圓心,半徑為零)。與此對應的是最大的反射系數(shù)1,即所有的入射波都被反射回來。

在作史密斯圓圖時,有一些需要注意的問題。下面是最重要的幾個方面:所有的圓周只有一個相同的,唯一的交點(1, 0)。

代表0

、也就是沒有電阻(r = 0)的圓是最大的圓。

無限大的電阻對應的圓退化為一個點(1, 0)

實際中沒有負的電阻,如果出現(xiàn)負阻值,有可能產(chǎn)生振蕩。

選擇一個對應于新電阻值的圓周就等于選擇了一個新的電阻。

作圖

經(jīng)過等式2.15至2.18的變換,2.7式可以推導出另一個參數(shù)方程,方程2.19。

同樣,2.19也是在復平面(

r,

i)上的圓的參數(shù)方程(x-a)2 + (y-b)2 = R2,它的圓心為(1, 1/x),半徑1/x。

更多細節(jié)參見圖4b。

圖4b. 圓周上的點表示具有相同虛部x的阻抗。例如,x=1的圓以(1, 1)為圓心,半徑為1。所有的圓(x為常數(shù))都包括點(1, 0)。與實部圓周不同的是,x既可以是正數(shù)也可以是負數(shù)。這說明復平面下半部是其上半部的鏡像。所有圓的圓心都在一條經(jīng)過橫軸上1點的垂直線上。

完成圓圖

為了完成史密斯圓圖,我們將兩簇圓周放在一起??梢园l(fā)現(xiàn)一簇圓周的所有圓會與另一簇圓周的所有圓相交。若已知阻抗為r + jx,只需要找到對應于r和x的兩個圓周的交點就可以得到相應的反射系數(shù)。

可互換性

上述過程是可逆的,如果已知反射系數(shù),可以找到兩個圓周的交點從而讀取相應的r和x的值。過程如下:確定阻抗在史密斯圓圖上的對應點

找到與此阻抗對應的反射系數(shù) (

)

已知特性阻抗和

,找出阻抗

將阻抗轉(zhuǎn)換為導納

找出等效的阻抗

找出與反射系數(shù)對應的元件值(尤其是匹配網(wǎng)絡的元件,見圖7)

推論

因為史密斯圓圖是一種基于圖形的解法,所得結(jié)果的精確度直接依賴于圖形的精度。下面是一個用史密斯圓圖表示的RF應用實例:

例: 已知特性阻抗為50

,負載阻抗如下:

Z1 = 100 + j50

Z2 = 75 -j100

Z3 = j200

Z4 = 150

Z5 =

(開路)Z6 = 0 (短路)Z7 = 50

Z8 = 184 -j900

對上面的值進行歸一化并標示在圓圖中(見圖5):

z1 = 2 + jz2 = 1.5 -j2z3 = j4z4 = 3

z5 = 8z6 = 0z7 = 1z8 = 3.68 -j18S

圖5. 史密斯圓圖上的點

現(xiàn)在可以通過圖5的圓圖直接解出反射系數(shù)

。畫出阻抗點(等阻抗圓和等電抗圓的交點),只要讀出它們在直角坐標水平軸和垂直軸上的投影,就得到了反射系數(shù)的實部

r和虛部

i (見圖6)。

該范例中可能存在八種情況,在圖6所示史密斯圓圖上可以直接得到對應的反射系數(shù)

1 = 0.4 + 0.2j 2 = 0.51 - 0.4j 3 = 0.875 + 0.48j 4 = 0.5

5 = 1 6 = -1 7 = 0 8 = 0.96 - 0.1j

圖6. 從X-Y軸直接讀出反射系數(shù)

的實部和虛部

用導納表示

史密斯圓圖是用阻抗(電阻和電抗)建立的。一旦作出了史密斯圓圖,就可以用它分析串聯(lián)和并聯(lián)情況下的參數(shù)??梢蕴砑有碌拇?lián)元件,確定新增元件的影響只需沿著圓周移動到它們相應的數(shù)值即可。然而,增加并聯(lián)元件時分析過程就不是這么簡單了,需要考慮其它的參數(shù)。通常,利用導納更容易處理并聯(lián)元件。

我們知道,根據(jù)定義Y = 1/Z,Z = 1/Y。導納的單位是yqdkh或者

-1 (早些時候?qū)Ъ{的單位是西門子或S)。并且,如果Z是復數(shù),則Y也一定是復數(shù)。

所以Y = G + jB (2.20),其中G叫作元件的“電導”,B稱“電納”。在演算的時候應該小心謹慎,按照似乎合乎邏輯的假設(shè),可以得出:G = 1/R及B = 1/X,然而實際情況并非如此,這樣計算會導致結(jié)果錯誤。

用導納表示時,第一件要做的事是歸一化, y = Y/Yo,得出 y = g + jb。但是如何計算反射系數(shù)呢?通過下面的式子進行推導:

結(jié)果是G的表達式符號與z相反,并有

(y) = -

(z).

如果知道z,就能通過將的符號取反找到一個與(0,0)的距離相等但在反方向的點。圍繞原點旋轉(zhuǎn)180°可以得到同樣的結(jié)果。(見圖7).

圖7. 180°度旋轉(zhuǎn)后的結(jié)果

當然,表面上看新的點好像是一個不同的阻抗,實際上Z和1/Z表示的是同一個元件。(在史密斯圓圖上,不同的值對應不同的點并具有不同的反射系數(shù),依次類推)出現(xiàn)這種情況的原因是我們的圖形本身是一個阻抗圖,而新的點代表的是一個導納。因此在圓圖上讀出的數(shù)值單位是yqdkh。

盡管用這種方法就可以進行轉(zhuǎn)換,但是在解決很多并聯(lián)元件電路的問題時仍不適用。

導納圓圖

在前面的討論中,我們看到阻抗圓圖上的每一個點都可以通過以

復平面原點為中心旋轉(zhuǎn)180°后得到與之對應的導納點。于是,將整個阻抗圓圖旋轉(zhuǎn)180°就得到了導納圓圖。這種方法十分方便,它使我們不用建立一個新圖。所有圓周的交點(等電導圓和等電納圓)自然出現(xiàn)在點(-1, 0)。使用導納圓圖,使得添加并聯(lián)元件變得很容易。在數(shù)學上,導納圓圖由下面的公式構(gòu)造:

解這個方程

接下來,令方程3.3的實部和虛部相等,我們得到兩個新的獨立的關(guān)系:

從等式3.4,我們可以推導出下面的式子:

它也是復平面 (

r,

i)上圓的參數(shù)方程(x-a)2 + (y-b)2 = R2 (方程3.12),以(-g/g+1, 0)為圓心,半徑為1/(1+g)。

猜你喜歡

18932453205